
Making Architecture Optimization Transparent with
Tactic-Based Explanations

J. Andres Diaz-Pace
ISISTAN, CONICET and UNICEN University

Tandil, Buenos Aires, Argentina

andres.diazpace@isistan.unicen.edu.ar

David Garlan
School of Computer Science, Carnegie Mellon University

Pittsburgh, PA, USA

garlan@cs.cmu.edu

Abstract—Over the past decade, a number of automated tech-
niques and tools have been developed for optimizing architectural
designs with respect to quality-attribute goals. In these systems,
the optimization process is typically seen as a black box, since it
is not possible for a human to have access to the decisions that led
to a particular solution generated by an optimization tool. Even
when these decisions are available for inspection, the amount of
information can be overwhelming for the architect. As a result,
humans might not completely understand the rationale behind
a given solution or trust that a tool made correct decisions. To
mitigate this problem, we propose a semi-automated approach
for generating textual explanations for any architectural solution
produced by a tool. This kind of explanation provides a summary
of the key architectural tactics that were applied to achieve an
optimized architecture that satisfies a set of quality-attribute ob-
jectives. In this paper, we discuss two procedures for determining
the key tactics to be explained. As an initial experiment, we used a
popular optimization tool to generate solutions and explanations
for a small but non-trivial design space involving performance,
reliability, and cost objectives. We also performed an exploratory
user study to assess the effectiveness of these explanations.

Index Terms—architecture optimization, tactics, explainability,
tool support, user study.

I. INTRODUCTION

Designing a software architecture to meet its main require-

ments is a complex and frequently error-prone process. This

process usually involves addressing a set of quality-attribute

objectives (e.g., performance, reliability, or cost, among oth-

ers) which might trade off with each other. Human architects

normally develop a number of candidate solutions and evaluate

them against the objectives. Each candidate is backed up by a

design rationale that captures the key decisions (e.g., patterns,

tactics, or technology choices) with their pros and cons, so

that stakeholders can understand the solution. Given the com-

plexity of today’s systems, the space of possible architectural

candidates for a set of quality attributes is often beyond human

capabilities. In response, several automated tools for assisting

architecture exploration via automated search and optimization

have been developed over the last years [1] [2] [3].

Architecture optimization tools are good at performing effi-

cient multi-objective search of the design space and returning

to a human architect a set of design candidates with different

quality-attribute trade-offs. Internally, these tools might rely

on a variety of techniques (e.g., genetic algorithms, model

checking, or hill climbing) to drive the search, and assemble

possible solutions. For instance, a tool can automatically apply

a sequence of transformations on an initial architecture for

progressively improving one or more quality objectives, while

considering various constraints and preferences. A tool can

also employ sophisticated quality-attribute analyses (such as

simulation) to assess each candidate. However, the design and

analysis mechanisms used by the tool tend to be opaque to the

architect, as they are typically fine-grained and overly-detailed

for human comprehension. Instead, humans are most likely to

reason about the solutions in terms of high-level constructs

such as the key architectural patterns or design decisions,

which are standard concepts in the architect’s mindset.

In this context, there is therefore a mismatch between

the human model driven by architecting concerns and the

tool model driven by optimization concerns. Human-like ex-

planations are required for how a generated solution came

to have particular design characteristics or meet a quality-

attribute objective. If a solution is not understood or trusted by

architects or developers, they might ignore the tool output or

carry out an implementation that fails to respect the generated

design. These issues emphasize the need for explainability in

software architecture and pose challenges such as:

• How to identify the key decisions of an architectural

design being automatically generated by a tool?

• How to present those decisions to a human (e.g., in textual

or graphical formats)?

• How to determine the level of detail that is appropriate

for these explanations?

Driven mainly by the first question, we propose a semi-

automated approach for creating textual explanations that

summarize the key design decisions and their quality-attribute

effects for a generated architecture. These explanations are

based on the notion of architectural tactics, as design decisions

that bridge a tool’s optimization mechanisms and an architect’s

comprehension needs. On one hand, tactics can serve a tool to

enable architectural transformations for improving an architec-

ture. On the other hand, tactics can serve humans as anchors

to answer questions about the outputs of that tool.

We have developed a prototype to demonstrate the ideas

above, using two alternative procedures for generating expla-

nations for a small design space that involves three quality-

attribute objectives along with tactics for improving them.

Furthermore, we conducted a small user study to assess the

5

2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C)

2768-4288/22/$31.00 ©2022 IEEE
DOI 10.1109/ICSA-C54293.2022.00008

effectiveness of the tactic-based explanations when architects

are exposed to design questions.

The rest of the paper is structured as follows. Section 2

motivates the need for human architects to understand the

outputs of an optimization tool in terms of key decisions.

In Section 3, we present our approach for generating tactic-

based explanations with two procedures. Section 4 reports on

the findings of our initial evaluation of the approach. Finally,

Section 5 gives the conclusions and outlines future work.

II. INTERPRETING ARCHITECTURE OPTIMIZATION

An architecture optimization tool can be seen as a decision-

making agent that generates one or more candidate architec-

tures for improving an initial architecture with respect to a

set of (possibly competing) quality-attribute objectives. In this

setting, each candidate results from applying a sequence of

transformations corresponding to design decisions made by

the agent. This sequence is referred to as the agent’s strat-
egy. In existing approaches to architecture optimization, like

PerOpteryx [4] or GATSE [3], the details of the strategy are

opaque to the architect who only sees the process outputs (once

a strategy has been chosen). Related works on architectural

decisions have captured those decisions via knowledge man-

agement techniques [5] or templates1. Decision traceability has

also been considered in prior research. However, less attention

has been paid to interpretability or transparency aspects when

humans analyze those decisions.

Fig. 1 illustrates an optimization scenario from the archi-

tect’s external perspective. The architect provides an initial

architecture A0 along with three quality-attribute objectives

that it should satisfy. Satisfaction is expressed in terms of

predefined thresholds for the objectives. After an internal

exploration process, the tool returns a candidate architecture

An that meets the performance objective. At this point, and

without knowing the strategy, a typical question posed by the

architect is: why does architecture An satisfy quality-attribute
objective X? For instance, she might want to know why the

performance objective was met by An (and why cost and

reliability were not). The why-question tries to understand both

the architecture and the rationale that led to it. Other types of

questions (e.g., why-not, how, what-if) could also be made [6].

To understand the role of tactics, let us depart from an initial

client-server architecture (A0) and a possible candidate (An)

returned by the tool, as shown in Figs. 2 and 3 respectively. In

this system, user requests (R1) pass through a load balancer

that assigns the requests to one of the active service instances

for processing. Each device is assumed to have a capacity

to host up to six service instances. Let us assume that we

have two simple tactics: increaseCapacity(?device)
and decreaseCapacity(?device), which refer to de-

ploying service instances on predefined server devices. Each

tactic has a different effect on the performance, reliability and

cost properties of the design solution. For instance, having

more service instances running concurrently (either on the

same or different devices) improves latency and throughput.

1https://adr.github.io/

Fig. 1. Opaque architecture optimization and the role of explanations.

Fig. 2. Initial client-server architecture.

However, if a group of service instances runs on the same

device, a failure in that device reduces the system processing

capabilities. In addition, increasing the number of devices with

active services uses more computational resources (if new

servers need to be provisioned), and incurs additional costs. In

this optimization scenario, the tool should apply the available

tactics judiciously to balance the three objectives. To compute

the effects of each tactic, we assume the tool relies on analysis

models for performance, reliability and cost [4].

For candidate An the tool strategy entails a

sequence of four architectural transformations (or

tactic instances): <increaseCapacity(device2),
increaseCapacity(device2),increaseCapacity
(device3),increaseCapacity(device4)>. Fig. 4

shows the evolution of the quality-attribute properties of the

intermediate architectures while reaching An. Although this

is a simple example, in general, the number of intermediate

and candidate architectures assessed by the tool can be large,

and the strategy for arriving at a candidate involves a large

number of tactic applications and quality-attribute analyses.

In the example, the tool could make the design strategy

evident to the architect by exposing the complete tactic se-

quence for An. However, tactic sequences become lengthy

even for relatively small design spaces (e.g., up to 10 tac-

tics in our example), which causes architects to experience

information overload. To deal with this problem, the tool

could offer instead a summary with the most relevant tactics

of the sequence for the why-question under analysis. The

intuition here is that other (subsidiary) decisions will fol-

6

Fig. 3. Candidate architecture.

Fig. 4. Improvement of quality-attribute values over time.

low from the most relevant ones, or that certain decisions

do not affect the quality attribute targeted by the question.

Specifically, each tactic can be assigned a relevance score

according to its support for the quality-attribute objective.

For instance, a performance-oriented summary would in-

clude only increaseCapacity(device2) (at step 1),

since this tactic produced the largest reduction in response

time in the sequence of Fig. 4. Analogously, the cost sum-

mary would include <increaseCapacity(device2),
increaseCapacity(device3)> because of their contri-

butions to the final cost. We see these kinds of summaries as

a local, human-oriented interpretation [7] of the optimization

process, providing a simplified (or approximate) view of the

tool’s strategy for an architecture candidate.

III. A TACTIC-BASED EXPLANATION APPROACH

Before delving into the generation of explanations, we

present the basic notions of our architecture optimization

framework, which derive from a multi-objective optimization

formulation [8]. Let us assume an architecture space composed

of multiple architectures AS = {A0, A1, A2, ..., An}, in which

A0 is designated as the initial architecture that needs to be

improved. The specific techniques (e.g., [1], [4]) for exploring

and populating AS are out of the scope of this paper.

We also assume that an architecture Ai can be defined

in terms of design variables. For instance, in a client-server

architectural style, like the one for the systems in Figs. 2 and 3,

the design variables might refer to: the number of active

devices, the number of service instances deployed on each

device, or the average processing time of a service, among

others. Each architecture Ai is evaluated using analysis models

to compute quality-attribute metrics for the architecture. For

instance, a performance model can estimate the latency of

client requests, while a reliability model can estimate the

failure probability for the system. More generally, an analysis

model can be seen as a function over design variables of

Ai, plus additional variables (or constants) coming from the

system environment (e.g., number of services allowed per

device). An architectural configuration, then, is given by an

assignment of values to those variables.

Given a set of k objectives to be optimized OS =
{O0, O1, O2, ..., Ok}, let us assume a quality-attribute space

that maps each architecture configuration Ai to a multi-valued

point in the objective space. Each objective Oj represents

a different quality-attribute metric, such as latency, failure

probability, or cost. There is a satisfaction threshold for each

objective that indicates whether an architecture configuration

is a valid (or satisfactory) solution for that objective2. For

instance, one might specify that a latency objective is met by

Ax if the performance analysis for Ax returns a value smaller

than a constant Pthreshold (for a minimization objective). In

our example of Fig. 4 Pthreshold = 20ms and the performance

value of An is below Pthreshold after four optimization steps.

A tactic is a transformation that modifies the values of

some design variables, while ensuring that the resulting con-

figuration is valid. Architectural tactics are based on stan-

dard design mechanisms (or decisions) for improving specific

quality attributes [9]. Given an initial architecture A0, the

optimization process generates multiple architectures that are

reachable from A0 by means of tactic sequences (strate-

gies). Suppose we have a strategy given by the sequence

STn =< T1, T2, T3, ..., Tn > that derives architecture An

from A0. Our interpretation problem is how to answer a why-
question for An with respect to Oj based on STn. In particular,

we propose choosing a subset RTn ⊂ STn containing the

most relevant tactics, along with a description of the tactic

effects on Oj . This description might have textual or graphical

contents and can be built using predefined templates [10].

Fig. 5 shows a template snippet that explains An focused

on the performance objective. The template is organized intro

three sections: context, rationale and summary. In this case,

the template placeholders were instantiated with data from:

A0, An, the three objectives and their respective thresholds,

the values of the quality-attribute analyses, and the first two

tactics (i.e., the relevant ones) from the strategy for An.

2Other types of optimization, not limited to thresholds, are also possible.

7

In general, we can then define a ranking function

relevance(Ai, Oj , STi) → RTi that computes a score for

each tactic Tx (in STi) with respect to Oj and generates RTi.

We have currently implemented two possible procedures for

this function, which are described below.

Instance-based Procedure: This procedure selects those

tactics Tx (from STi) with the largest effect on the im-

provement of Oj . Improvement is quantified as the gradient

between two consecutive architectures Ai and Ai+1 in the

sequence. The direction of the gradient is also analyzed: for

a minimization objective (like response time), the gradient

should be negative, while for a maximization objective it

should be positive. In our implementation, we considered a

gradient to be large enough if it was greater than the average

gradient of the sequence. Under this criterion, the first two

tactics of An (Fig. 4) received the highest scores and were

listed in the context section of the template (Fig. 5). If the

architect’s question were instead about cost, the first and third

tactics would have been selected.

Neighborhood-based Procedure: The target strategy STi

is compared to other similar sequences produced by the

optimization so as to discriminate influential tactics. A tactic

is said to be influential if its absence (in a sequence) results

in a different outcome for Oj . To do so, we codify each

sequence in terms of its constitutive tactics, the number of

times each tactic was applied, and the values of all the

objectives at An. The group of tactics being similar to STi

can be obtained via clustering (e.g. k-means or agglomerative

clustering algorithms). In this group, we separate out the

tactics that meet Oj (i.e., its threshold) from those that do

not, transforming the problem into a binary classification.

Then, we train a standard classifier (e.g., a decision tree) and

apply a feature importance technique to get a ranking of the

most influential tactics for threshold satisfaction. For instance,

Fig. 6 lists a ranking of tactics for a neighborhood of Tn

under Pthreshold = 18 using permutation feature importance.

Note that the results differ from those of the instance-based

procedure: increaseCapacity(device3) was found to

be the main tactic (to be included in the template) and

increaseCapacity(device1) is not part of the original

STn. This situation can be attributed to the different informa-

tion sources (single sequence versus similar sequences) used

by the procedures for computing relevance.

IV. INITIAL EVALUATION

To assess the role of tactic-based explanations, as generated

with our approach, we conducted an exploratory user study

with a group of 12 architects: 8 from academia and 3 from

industry. 70% of the participants had more than 10 years

of experience and 50% reported having excellent software

architecture knowledge. The goal was to gather feedback on

the pros and cons of explanations when used by architects

in design evaluation tasks. The main instrument was an

online questionnaire3 that presented an architecture reasoning

3The questionnaires can be accessed here: https://www.surveymonkey.com/
r/HSBXNVJ and https://www.surveymonkey.com/r/HRV68J7

Fig. 5. Example of explanation generated using a predefined textual template

Fig. 6. Example of key tactics using the neighborhood-based procedure.

exercise to the subjects. The user study was organized as an

A/B experiment, in which half of the subjects received the

questionnaire without explanations (control group), while the

other half received the same questionnaire with an explanation

(treatment group). We looked at various quantitative metrics

(e.g., time taken to complete each question, correct answers)

and also analyzed qualitative feedback.

Starting with an initial architecture A0 (as in Fig. 2), we

ran an optimization process based on the PRISM4 model

checker [11] that explored 2108 intermediate architectures and

returned 308 architecture candidates with various tradeoffs

among performance, reliability and cost. Then, we picked a

random candidate and asked our tool to produce two textual

explanations: for performance and reliability. Since we were

also interested in alternative explanation formats, we manually

created a graphical representation that conveyed the same

content as the textual format but with a more visual format (the

content and format of both explanation types are exemplified

in the online questionnaires). Hence, we ended up with two

questionnaire variants: one focused on performance and the

other focused on reliability. Each questionnaire variant was

divided into three groups: a first was without explanations,

a second had textual explanations, and a third had graphical

explanations. We used SurveyMonkey to create and distribute

the questionnaires to the subjects, and collect their responses.

The base questionnaire contained five design situations and

4https://www.prismmodelchecker.org/

8

questions. Each subject was presented with both the initial

architecture and the generated candidate, and was asked about

the relationships between the underlying candidate design and

the quality-attribute objectives it had to satisfy. Each subject

was asked to record the time taken to answer each question.

The whole exercise was expected to take 20-30 minutes.

The questionnaire also asked about the perceived exercise

difficulty, the subject’s architecture expertise, her confidence

on the answers, and general feedback.

Fig. 7 summarizes the results of the three groups ac-

cording to the type of explanation provided. We observed

that including explanations increased the time needed by the

subjects for answering the questions, as expressed in [12].

The extra effort of going through an explanation, however,

should allow a subject to gain more confidence in her answers

or improve her understanding of the design (e.g., making a

larger number of correct deductions). Since architects normally

rely on graphical representations for their daily tasks, we

conjectured that graphical explanations would be more useful

(or take less reading time) than textual explanations. As for

the subjects’ confidence in their answers, we observed a slight

difference in favor of the groups using explanations. However,

since most participants were experienced architects, they might

have relied on prior experiences to answer confidently.

Analyzing the correctness of subjects’ answers (i.e., that

they marked the right answers), we found that the groups with

and without explanations were equally able to complete the

tasks and had the same error rate (≈ 20%). The subjects’

seniority could also explain this trend. Interestingly, in the

treatment group all mistakes were in cases with textual expla-

nations. These subjects might have spent more time reading

through the template than those using a graphical format.

Finally, from the subjects’ qualitative feedback, we note that

most of them asked for more contextual information in order

to analyze the questions properly. For instance, certain tactics

could be analyzed differently (or with a higher confidence)

if the assumptions behind those decisions were clearer in

the explanations. Thus, we think that choosing a subset of

key tactics might be not enough, and the explanations should

include somehow the context around those tactics.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented an approach towards making

the results of an architecture optimization tool more com-

prehensible to human architects. We relied on architectural

tactics as shared constructs between the human’s mental model

(of design decisions) and the optimization mechanisms used

by the tool. We also proposed two procedures for reducing

the amount of information being presented to the architect to

mitigate the cognitive load of the explanations. Along this line,

the notion of relevant design decisions (in the form of tactics)

was identified. The explanations delivered by our approach

are local as they expose the decisions for a given architecture

rather than the variables of the whole design space.

The evaluation results, although preliminary, show that

both the explanation format (e.g., text, charts, layout) and

Fig. 7. Time taken and perceived confidence according to subject group.

the context in which the key decisions are presented are

important for architects, and thus, they should be further

investigated. As future work, we will explore explainability

techniques to deal with different quality-attribute questions for

architectural designs. Finally, we will also experiment with

other optimization tools and larger case-studies.

REFERENCES

[1] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya,
“Software architecture optimization methods: A systematic literature
review,” IEEE Trans. on Soft. Eng., vol. 39, no. 5, pp. 658–683, 2013.

[2] A. R. Quesada, J. R. Romero, and S. Ventura, “Interactive multi-
objective evolutionary optimization of software architectures,” Inf. Sci.,
vol. 463-464, pp. 92–109, 2018.

[3] S. Procter and L. Wrage, “Guided architecture trade space exploration:
Fusing model based engineering amp; design by shopping,” in 2019
ACM/IEEE 22nd Int. Conf. on Model Driven Engineering. Languages
and Systems (MODELS), 2019, pp. 117–127.

[4] A. Busch, D. Fuchß, and A. Koziolek, “Peropteryx: Automated improve-
ment of software architectures,” in 2019 IEEE International Conference
on Software Architecture Companion (ICSA-C), 2019, pp. 162–165.

[5] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years
of software architecture knowledge management: Practice and future,”
Journal of Systems and Software, vol. 116, pp. 191–205, 2016.

[6] Q. V. Liao, D. Gruen, and S. Miller, “Questioning the AI: Informing
design practices for explainable AI user experiences,” in Proc. 2020
CHI Conf. on Human Factors in Comp. Systems. ACM, Apr. 2020.

[7] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable
machine learning,” 2017, cite arxiv:1702.08608.

[8] J. A. D. Pace and M. R. Campo, “Exploring alternative software
architecture designs: A planning perspective,” IEEE Intell. Syst., vol. 23,
no. 5, pp. 66–77, 2008.

[9] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
ser. SEI series in software engineering. Addison-Wesley, 2003.

[10] R. Sukkerd, R. Simmons, and D. Garlan, “Tradeoff-focused contrastive
explanation for mdp planning,” in Proc. 29th IEEE Int. Conf. on Robot
Human Interactive Communication, Virtual, September 2020.

[11] J. Cámara, D. Garlan, and B. Schmerl, “Synthesizing tradeoff spaces
of quantitative guarantees for families of software systems,” Journal of
Systems and Software, vol. 152, pp. 33–49, June 2019.

[12] N. Li, J. Cámara, D. Garlan, and B. Schmerl, “Reasoning about when
to provide explanation for human-in-the-loop self-adaptive systems,” in
Proc. of the 2020 IEEE Conference on Autonomic Computing and Self-
organizing Systems (ACSOS), Washington, D.C., 19-23 August 2020.

9

